Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Med (Lausanne) ; 9: 824994, 2022.
Article in English | MEDLINE | ID: covidwho-2239158

ABSTRACT

Background: It is known that acute cor pulmonale (ACP) worsens the prognosis of non-coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (NC-ARDS). The ACP risk score evaluates the risk of ACP occurrence in mechanically ventilated patients with NC-ARDS. There is less data on the risk factors and prognosis of ACP induced by COVID-19-related pneumonia. Objective: The objective of this study was to evaluate the prognostic value of ACP, assessed by transthoracic echocardiography (TTE) and clinical factors associated with ACP in a cohort of patients with COVID-19-related pneumonia. Materials and methods: Between February 2020 and June 2021, patients admitted to intensive care unit (ICU) at Amiens University Hospital for COVID-19-related pneumonia were assessed by TTE within 48 h of admission. ACP was defined as a right ventricle/left ventricle area ratio of >0.6 associated with septal dyskinesia. The primary outcome was mortality at 30 days. Results: Among 146 patients included, 36% (n = 52/156) developed ACP of which 38% (n = 20/52) were non-intubated patients. The classical risk factors of ACP (found in NC-ARDS) such as PaCO2 >48 mmHg, driving pressure >18 mmHg, and PaO2/FiO2 < 150 mmHg were not associated with ACP (all P-values > 0.1). The primary outcome occurred in 32 (22%) patients. More patients died in the ACP group (n = 20/52 (38%) vs. n = 12/94 (13%), P = 0.001). ACP [hazards ratio (HR) = 3.35, 95%CI [1.56-7.18], P = 0.002] and age >65 years (HR = 2.92, 95%CI [1.50-5.66], P = 0.002) were independent risk factors of 30-day mortality. Conclusion: ACP was a frequent complication in ICU patients admitted for COVID-19-related pneumonia. The 30-day-mortality was 38% in these patients. In COVID-19-related pneumonia, the classical risk factors of ACP did not seem relevant. These results need confirmation in further studies.

2.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2072824

ABSTRACT

Background It is known that acute cor pulmonale (ACP) worsens the prognosis of non-coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (NC-ARDS). The ACP risk score evaluates the risk of ACP occurrence in mechanically ventilated patients with NC-ARDS. There is less data on the risk factors and prognosis of ACP induced by COVID-19-related pneumonia. Objective The objective of this study was to evaluate the prognostic value of ACP, assessed by transthoracic echocardiography (TTE) and clinical factors associated with ACP in a cohort of patients with COVID-19-related pneumonia. Materials and methods Between February 2020 and June 2021, patients admitted to intensive care unit (ICU) at Amiens University Hospital for COVID-19-related pneumonia were assessed by TTE within 48 h of admission. ACP was defined as a right ventricle/left ventricle area ratio of >0.6 associated with septal dyskinesia. The primary outcome was mortality at 30 days. Results Among 146 patients included, 36% (n = 52/156) developed ACP of which 38% (n = 20/52) were non-intubated patients. The classical risk factors of ACP (found in NC-ARDS) such as PaCO2 >48 mmHg, driving pressure >18 mmHg, and PaO2/FiO2 < 150 mmHg were not associated with ACP (all P-values > 0.1). The primary outcome occurred in 32 (22%) patients. More patients died in the ACP group (n = 20/52 (38%) vs. n = 12/94 (13%), P = 0.001). ACP [hazards ratio (HR) = 3.35, 95%CI [1.56–7.18], P = 0.002] and age >65 years (HR = 2.92, 95%CI [1.50–5.66], P = 0.002) were independent risk factors of 30-day mortality. Conclusion ACP was a frequent complication in ICU patients admitted for COVID-19-related pneumonia. The 30-day-mortality was 38% in these patients. In COVID-19-related pneumonia, the classical risk factors of ACP did not seem relevant. These results need confirmation in further studies.

3.
J Clin Med ; 11(9)2022 May 06.
Article in English | MEDLINE | ID: covidwho-1847356

ABSTRACT

INTRODUCTION: Right ventricular systolic dysfunction (RVsD) increases acute respiratory distress syndrome mortality in COVID-19 infection (CARDS). The RV longitudinal shortening fraction (RV-LSF) is an angle-independent and automatically calculated speckle-tracking parameter. We explored the association between RV-LSF and 30-day mortality in CARDS patients. METHODS: Moderate-to-severe CARDS patients hospitalized at Amiens University Hospital with transesophageal echocardiography performed within 48 h of intensive care unit admission were included. RVsD was defined by an RV-LSF of <20%. The patients were divided into two groups according to the presence of RVsD. Using multivariate Cox regression, clinical and echocardiographic risk factors predicting 30-day mortality were evaluated. RESULTS: Between 28 February 2020 and 1 December 2021, 86 patients were included. A total of 43% (n = 37/86) of the patients showed RVsD and 22% (n = 19/86) of the patients died. RV-LSF was observed in 26 (23.1-29.7)% of the no-RVsD function group and 16.5 (13.7-19.4)% (p < 0.001) of the RVsD group. Cardiogenic shock (n = 7/37 vs. 2/49, p = 0.03) and acute cor pulmonale (n = 18/37 vs. 10/49, p = 0.009) were more frequent in the RVsD group. The 30-day mortality was higher in the RVsD group (15/37 vs. 4/49, p = 0.001). In a multivariable Cox model, RV-LSF was an independent mortality factor (HR 4.45, 95%CI (1.43-13.8), p = 0.01). CONCLUSION: in a cohort of moderate-to-severe CARDS patients under mechanical ventilation, RVsD defined by the RV-LSF was associated with higher 30-day mortalities.

4.
Ann Intensive Care ; 11(1): 168, 2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1555167

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most documented arrhythmia in COVID-19 pneumonia. Left atrial (LA) strain (LAS) analysis, a marker of LA contractility, have been associated with the development of AF in several clinical situations. We aimed to assess the diagnostic ability of LA strain parameters to predict AF in patients with severe hypoxemic COVID-19 pneumonia. We conducted a prospective single center study in Amiens University Hospital intensive care unit (ICU) (France). Adult patients with severe or critical COVID-19 pneumonia according to the World Health Organization definition and in sinus rhythm were included. Transthoracic echocardiography was performed within 48 h of ICU admission. LA strain analysis was performed by an automated software. The following LA strain parameters were recorded: LA strain during reservoir phase (LASr), LA strain during conduit phase (LAScd) and LA strain during contraction phase (LASct). The primary endpoint was the occurrence of AF during ICU stay. RESULTS: From March 2020 to February of 2021, 79 patients were included. Sixteen patients (20%) developed AF in ICU. Patients of the AF group were significantly older with a higher SAPS II score than those without AF. LAScd and LASr were significantly more impaired in the AF group compared to the other group (- 8.1 [- 6.3; - 10.9] vs. - 17.2 [- 5.0; - 10.2] %; P < 0.001 and 20.2 [12.3;27.3] % vs. 30.5 [23.8;36.2] %; P = 0.002, respectively), while LASct did not significantly differ between groups (p = 0.31). In a multivariate model, LAScd and SOFA cv were significantly associated with the occurrence of AF. A LAScd cutoff value of - 11% had a sensitivity of 76% and a specificity of 75% to identify patients with AF. The 30-day cumulative risk of AF was 42 ± 9% with LAScd > - 11% and 8 ± 4% with LAScd ≤ - 11% (log rank test P value < 0.0001). CONCLUSION: For patients with severe COVID-19 pneumonia, development of AF during ICU stay is common (20%). LAS parameters seem useful in predicting AF within the first 48 h of ICU admission. TRIAL REGISTRATION: NCT04354558.

5.
J Cardiothorac Vasc Anesth ; 35(12): 3594-3603, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1033093

ABSTRACT

OBJECTIVE: To compare two-dimensional-speckle tracking echocardiographic parameters (2D-STE) and classic echocardiographic parameters of right ventricular (RV) systolic function in patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (CARDS) complicated or not by acute cor pulmonale (ACP). DESIGN: Prospective, between March 1, 2020 and April 15, 2020. SETTING: Intensive care unit of Amiens University Hospital (France). PARTICIPANTS: Adult patients with moderate-to-severe CARDS under mechanical ventilation for fewer than 24 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Tricuspid annular displacement (TAD) parameters (TAD-septal, TAD-lateral, and RV longitudinal shortening fraction [RV-LSF]), RV global longitudinal strain (RV-GLS), and RV free wall longitudinal strain (RVFWLS) were measured using transesophageal echocardiography with a dedicated software and compared with classic RV systolic parameters (RV-FAC, S' wave, and tricuspid annular plane systolic excursion [TAPSE]). RV systolic dysfunction was defined as RV-FAC <35%. Twenty-nine consecutive patients with moderate-to-severe CARDS were included. ACP was diagnosed in 12 patients (41%). 2D-STE parameters were markedly altered in the ACP group, and no significant difference was found between patients with and without ACP for classic RV parameters (RV-FAC, S' wave, and TAPSE). In the ACP group, RV-LSF (17% [14%-22%]) had the best correlation with RV-FAC (r = 0.79, p < 0.001 v r = 0.27, p = 0.39 for RVGLS and r = 0.28, p = 0.39 for RVFWLS). A RV-LSF cut-off value of 17% had a sensitivity of 80% and a specificity of 86% to identify RV systolic dysfunction. CONCLUSIONS: Classic RV function parameters were not altered by ACP in patients with CARDS, contrary to 2D-STE parameters. RV-LSF seems to be a valuable parameter to detect early RV systolic dysfunction in CARDS patients with ACP.


Subject(s)
COVID-19 , Pulmonary Heart Disease , Ventricular Dysfunction, Right , Adult , Humans , Prospective Studies , Pulmonary Heart Disease/diagnostic imaging , Pulmonary Heart Disease/etiology , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right
SELECTION OF CITATIONS
SEARCH DETAIL